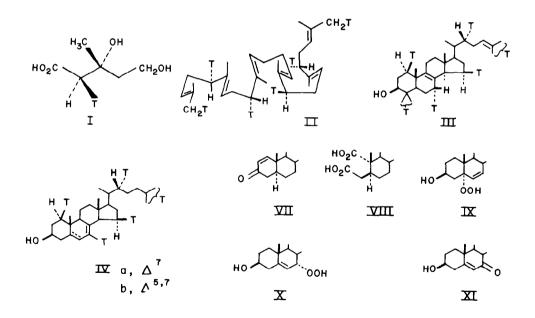
STEREOCHEMISTRY OF TRITIUM AT C-1 AND C-7 IN CHOLESTEROL DERIVED FROM (3R,2R)-2T-MEVALONIC ACID E. Caspi, J. B. Greig, P. J. Ramm and K. R. Varma Worcester Foundation for Experimental Biology Shrewsbury, Massachusetts

(Received in USA 25 April 1968; received in UK for publication 4 June 1968)


Consideration of the incorporation of mevalonic acid stereospecifically labeled with isotopic hydrogen at C-2, into squalene⁽¹⁾ and the cyclisation of the latter into sterols allows the prediction of the stereochemistry of the tritium atoms in the biosynthesised products. Hence, (3R,2R)-2T-mevalonic acid (I) leads to 1, 5R, 9R, 16R, 20R, 24 T₆-squalene (II). Cyclisation of this squalene will give T₆-lanosterol (III) labeled in the l β , 7 α , 15 β , 22R, 30 or 31 and 26 or 27 positions. The transformation from lanosterol to cholesterol involves the intermediacy⁽²⁾ first of a C-7 olefin (IVa) and then a 5, 7 diene (IVb). Consequently, one of the C-7 protons which originate from C-2 of mevalonic acid will be lost during the transformation⁽³⁾. In this communication we concern ourselves with the fate and the stereochemistry of the tritium atoms at C-1 and C-7 in cholesterol derived from (3R,2R)-2T-mevalonic acid.

Cholesterol was biosynthesised⁽⁴⁾ by incubation of $(3R,2R)-2T-2^{14}C$ -mevalonic acid with a rat liver preparation⁽⁵⁾. The cholesterol was purified by thin layer chromatography in two systems (a) ethyl acetate: hexane 3:7 and (b) methanol:benzene 1:19. A portion of the material $(1.72 \times 10^6 \text{ d.p.m. } ^{14}C)^{(6)}$ was diluted with non-radioactive cholesterol (1.5 g), and crystallized to constant specific activity giving a $T/^{14}C$ ratio of 10.1.

	т/14с	NO. T. Atoms
Cholesterol	10.1	5.00
Cholest-4-en-3-one (V)	9.7	4.80
50-Cholestan-3-one (VI)	9.7	4.80
5α-Cholest-l-en-3-one (VII)	10.0	4.95
l,2-seco-5α-cholestan-l,3-		
dioic acid (VIII)	8.2	4.06
5α-Hydroperoxycholest-6-en-3β-ol (IX)	9.8	4.85
7α-Hydroperoxycholest-5-en-3β-ol (X)	9.7	4.80
Cholest-5-en-38-ol-7-one	8.1	4.Cl

			TABLE			
т/ ^{1.04} с	Ratios*	And	Number	of	Tritium	Atoms

*The T/14C ratios were determined on recrystallized materials and were constant. The results represent the averages of nine determinations. The number of T atoms is calculated on the basis of the T/14C (10.1) ratio for cholesterol.

No.35

For the determination of the presence and stereochemistry of tritium at C-1, the cholesterol was oxidised by the Oppenauer method^(?) to cholest-4-en-3-one (V) $(T/^{14}C$ ratio 9.7). (Table). Reduction of V with lithium in liquid ammonia⁽⁸⁾ gave 5 α -cholestan-3-one (VI) $(T/^{14}C$ ratio 9.7). Dehydrogenation of VI with dichlorodicyanobenzoquinone $(DDQ)^{(9)}$ yielded 5 α -cholest-1-en-3-one (VI) m.p. 109-110° $(T/^{14}C$ ratio 10.0). Finally, oxidative cleavage of VII gave 1,2-seco-5 α -cholestan-1,3-dioic acid (VIII) m.p. 216.5-218.5° $(m/e:420,M^{*}): (T/^{14}C$ ratio 8.2). The 1/5 decrease in $T/^{14}C$ ratio reflects the loss of one out of five tritium atoms during the oxidation, this tritium being located at C-1. Since Ringold and Turner⁽⁹⁾ demonstrated that DDQ dehydrogenation of steroidal 5 α -3-ketones proceeds with loss of the 1 α and 2 β axial hydrogens, then the tritium atom at C-1 must have the expected 1 β -stereo-chemistry.

The demonstrated presence of five tritium atoms in the cholesterol indicates that isotopic hydrogen is still present at C-7. It could therefore be inferred that the formation of the \triangle^7 intermediate (IVa) involves the elimination⁽¹⁰⁾ of the 7 β rather than the 7 α hydrogen. Confirmation of the presence of a tritium atom at C-7 and of its stereochemistry was sought and is now described.

Cholesterol was photolysed in the presence of oxygen and hematoporphyrin⁽¹¹⁾ giving 5α -hydroperoxycholest-6-en-3 β -ol (IX) m.p. 147-149° (T/¹⁴C ratio 9.8). Isomerisation^(12,13) of IX gave 7α -hydroperoxycholest-5-en-3 β -ol (X) m.p. 154-156° (T/¹⁴C ratio 9.7). Simultaneous isomerisation and dehydration of IX with cupric chloride⁽¹²⁾ in pyridine gave cholest-5-en-3 β -ol-7-one (XI) (T/¹⁴C ratio 8.1). The 1/5 decrease in T/¹⁴C ratio again indicates the loss of one out of five isotopic hydrogens and proves unequivocally the presence of a tritium atom at C-7. Since the photoxidation of cholesterol is a stereospecific process involving the loss of the 7 α hydrogen atom⁽¹¹⁾, the tritium <u>must have the</u> <u>7 β configuration</u>. It follows that the saturation of Δ^7 double bond of the 5,7-diene (IVb) involves the addition, at C-7, of a hydrogen which assumes the α -stereo-chemistry⁽¹⁴⁾. The overall result of the events occurring at C-7 during the conversion of lanosterol to cholesterol is therefore the inversion from the 7 α to the 7 β configuration of the proton originating from the pro-2R hydrogen of mevalonic acid.

<u>Acknowledgement</u> This work was supported by grant P-500-G from the American Cancer Society and grant K3-16614 from the National Cancer Institute.

REFERENCES

- 1. G. Popjak and J. W. Cornforth, Biochem. J. 101, 553 (1966).
- For pertinent references see I. D.Frantz and G. J. Schroepfer, Ann. Rev. Biochem. <u>36</u>, 691 (1967)
- L. Canonica, A. Fiecchi, M. Galli Kienle, A. Scala, G. Galli, E. Grossi Paoletti and R. Paoletti, Steroids <u>11</u>, 287 (1968)
- 4. Results for the biosynthetic intermediates squalene and lanosterol will be published at a later date.
- 5. J. W. Cornforth, R. H. Cornforth, A. Pelter, M. G. Horning and G. Popjak, Tetradedon 5, 311 (1959).
- 6. Samples were counted on a Nuclear-Chicago, automatic liquid scintillation counter, Model Mark I. The samples were dissolved in 15 ml of a scintillator solution of tolucne containing 4 g of 2,5-diphenyloxazole and 100 mg of p-bis-2-(5-phenyloxazolyl)-benzene, per 1000 ml. The observed variations in the T/l⁴C ratios of all compounds desribed fall within experimental error of the method employed.
- 7. The physical constants and spectroscopic results (i.r., n.m.r. and mass spectra) were consistent with the assigned structures in all cases.
- 8. F. L. Weisenborn and H. E. Applegate, J. Amer. Chem. Soc., <u>61</u>, 1960 (1959).
- 9. A. B. Turner and H. J. Ringold, J. Chem. Soc. (C), 1720 (1967).
- 10. M. Akhtar and A. D. Rahimtula, Chem. Comm., 259 (1968).
- 11. A. Nickon and J. F. Bagli, J. Amer. Chem. Soc., 83, 1498 (1961).
- 12. G. O. Schenk, O. A. Neumuller and W. Eisfeld, Ann., 616 202 (1958).
- 13. B. Lythgoe and S. Tripett, J. Chem. Soc., 471 (1959).
- 14. D. C. Wilton, K. A. Munday, S. J. M. Skinner and M. Akhtar, Biochem. J., 106, 803 (1968).